Cho bốn điểm A(2;-1;6), B(-3;-1;-4),C(5;-1;0), D(1;2;1).
a) Chứng minh ABC là tam giác vuông. Tính bán kính đường tròn nội tiếp của tam giác.
b) Tính thể tích tứ diện ABCD.
c) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.
a) Ta có \(\overrightarrow {BA} = (5;0;10),\)
\(\overrightarrow {CA} = ( - 3;0;6),\)
\(\overrightarrow {CB} = ( - 8;0; - 4).\)
Do \(\overrightarrow {CA} .\overrightarrow {CB} = 24 - 24 = 0\) nên ABC là tam giác vuông tại C.
\({S_{ABC}} = {1 \over 2}CA.CB = {1 \over 2}.3\sqrt 5 .4\sqrt 5 = 30.\)
Ta lại có \(p = {1 \over 2}(AB + BC + CA) \)
Advertisements (Quảng cáo)
\(= {1 \over 2}(5\sqrt 5 + 3\sqrt 5 + 4\sqrt 5 ) = 6\sqrt 5 .\)
Mặt khác S = p.r, suy ra \(r = {S \over p} = {{30} \over {6\sqrt 5 }} = \sqrt 5 .\)
b) Ta có
\(\eqalign{ & \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } \right] = \left( {\left| \matrix{ 0 \hfill \cr 0 \hfill \cr} \right.\left. \matrix{ 10 \hfill \cr 4 \hfill \cr} \right|;\left| \matrix{ 10 \hfill \cr 4 \hfill \cr} \right.\left. \matrix{ 5 \hfill \cr 8 \hfill \cr} \right|;\left| \matrix{ 5 \hfill \cr 8 \hfill \cr} \right.\left. \matrix{ 0 \hfill \cr 0 \hfill \cr} \right|} \right)\cr&\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;= (0;60;0), \cr & \overrightarrow {BD} = (4;3;5) \cr & \Rightarrow {V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {BA} .\overrightarrow {BC} } \right].\overrightarrow {BD} } \right|\cr& \;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;= {1 \over 6}\left| {0.4 + 60.3 + 0.5} \right| = 30 \cr} \)
c) Gọi I(x;y;z) là tâm mặt cầu ngoại tiếp tứ diện ABCD.
Từ điều kiện \(I{A^2} = I{B^2},I{A^2} = I{C^2},I{A^2} = I{D^2}\), ta có hệ phương trình
\(\left\{ \matrix{ - 10x = 20z + 15 = 0 \hfill \cr 6x - 12z + 15 = 0 \hfill \cr - 2x + 6y - 10z + 35 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = - {1 \over 2} \hfill \cr y = - {{13} \over 3} \hfill \cr z = 1. \hfill \cr} \right.\)
Vậy mặt cầu cần tìm có tâm \(I\left( { - {1 \over 2}; - {{13} \over 3};1} \right)\) và bán kính là
\(\eqalign{ & R = IC \cr&= \sqrt {{{\left( {5 + {1 \over 2}} \right)}^2} + {{\left( { - 1 + {{13} \over 3}} \right)}^2} + {{(0 - 1)}^2}} \cr & = \sqrt {{{121} \over 4} + {{100} \over 9} + 1} = \sqrt {{{1525} \over {36}}.} \cr} \)
Do đó phương trình mặt cầu ngoại tiếp tứ diện ABCD là
\({\left( {x + {1 \over 2}} \right)^2} + {\left( {y + {{13} \over 3}} \right)^2} + {\left( {z - 1} \right)^2} = {{1525} \over {36}}.\)