Trang chủ Lớp 12 SBT Toán 12 Nâng cao Bài 82 trang 136 Sách bài tập Hình học lớp 12 Nâng...

Bài 82 trang 136 Sách bài tập Hình học lớp 12 Nâng cao: Trong không gian tọa độ Oxyz cho mặt phẳng...

Trong không gian tọa độ Oxyz cho mặt phẳng. Bài 82 trang 136 Sách bài tập Hình học lớp 12 Nâng cao – Bài 3. Phương trình đường thẳng

Trong không gian tọa độ Oxyz cho mặt phẳng

\(\left( \alpha  \right):Ax + By + Cz + D = 0,ABC \ne 0\)

và điểm M0(x0,y0,z0) không thuộc \(\left( \alpha  \right)\). Các đường thẳng qua M0 lần lượt song song với các trục tọa độ cắt \(\left( \alpha  \right)\) tại \({M_1},{M_2},{M_3}.\) Tính thể tích khối tứ diện \({M_0}{M_1}{M_2}{M_3}.\)

Gọi d1 là đường thẳng qua M0 (x0 ; y0 ; z0) và song song với trục Ox thì d1 có vectơ chỉ phương là (1 ; 0 ; 0). Ta có phương trình của d1

\({d_1}:\left\{ \matrix{  x = {x_o} + t \hfill \cr  y = y_o \hfill \cr  z = {z_o}. \hfill \cr}  \right.\)

Gọi M1 là giao điểm của d1 với mp(\(\alpha \)). Toạ độ (x; y; z) của M1 thoả mãn hệ

Quảng cáo

\(\left\{ \matrix{  x = {x_o} + t \hfill \cr  y = y_o \hfill \cr  z = {z_o} \hfill \cr  Ax + By + Cz + D = 0 \hfill \cr}  \right.\)

    \(\eqalign{  &  \Rightarrow {M_1} = \left( {{x_o} – {{A{x_o} + B{y_o} + C{z_o} + D} \over A};{y_o};{z_o}} \right)  \cr  &  \Rightarrow {M_O}{M_1} = \left| {{{A{x_o} + B{y_o} + C{z_o} + D} \over A}} \right|. \cr} \)

Tương tự, gọi d2 là đường thẳng đi qua M0 và song song với Oỵ, d2 cắt (\(\alpha \)) tại M2 thì

\({M_O}{M_2} = \left| {{{A{x_o} + B{y_o} + C{z_o} + D} \over B}} \right|.\)

Gọi d3 là đường thẳng đi qua M0 và song song với Oz, d3 cắt (\(\alpha \)) tại M3 thì

\({M_O}{M_3} = \left| {{{A{x_o} + B{y_o} + C{z_o} + D} \over C}} \right|.\)

Dễ thấy MoM1, MoM2, MoM3 đôi một vuông góc, do đó

\({V_{{M_o}{M_1}{M_2}{M_3}}} = {1 \over 6}{M_o}{M_1}.{M_o}{M_2}.{M_o}{M_3} \)

                     \(= {{{{\left| {A{x_o} + B{y_o} + C{z_o} + D} \right|}^3}} \over {6.\left| {A.B.C} \right|}}.\)

Quảng cáo