Trang chủ Lớp 12 SBT Toán 12 Nâng cao Câu 2.67 trang 81 Sách BT Giải Tích 12 nâng cao: Tìm...

Câu 2.67 trang 81 Sách BT Giải Tích 12 nâng cao: Tìm các giới hạn sau:...

Tìm các giới hạn sau:. Câu 2.67 trang 81 sách bài tập Giải tích 12 Nâng cao – Bài 5 6. Hàm số mũ hàm số lôgarit và hàm số lũy thừa

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 0} {{{e^{3x}} – 1} \over x}\)                             b) \(\mathop {\lim }\limits_{x \to 0} {{{e^{2x}} – {e^{3x}}} \over {5x}}\)

c) \(\mathop {\lim }\limits_{x \to 5} \left( {{2^x} – {3^x}} \right)\)                     d) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {x{e^{{1 \over x}}} – x} \right)\)

Giải

a) \(\mathop {\lim }\limits_{x \to 0} {{{e^{3x}} – 1} \over x}\) 

Quảng cáo

\( = 3.\mathop {\lim }\limits_{x \to 0} {{{e^{3x}} – 1} \over {3x}} = 3.1 = 3\)                            

b) 

\(\eqalign{ & \mathop {\lim }\limits_{x \to 0} {{{e^{2x}} – {e^{3x}}} \over {5x}} = \mathop {\lim }\limits_{x \to 0} \left( {{{{e^{2x }-1}} \over {5x}} – {{{e^{3x }-1}} \over {5x}}} \right)  \cr&  = \mathop {\lim }\limits_{x \to 0} {{{e^{2x }-1}} \over {2x}}.{2 \over 5} – \mathop {\lim }\limits_{x \to 0} {{{e^{3x }-1}} \over {3x}}.{3 \over 5} \cr&= {2 \over 5} – {3 \over 5} =  – {1 \over 5} \cr} \)

c) \(\mathop {\lim }\limits_{x \to 5} \left( {{2^x} – {3^x}} \right)\)

\( = {2^5} – {3^5} =  – 211\)                                   

d)

 \(\mathop {\lim }\limits_{x \to  + \infty } \left( {x{e^{{1 \over x}}} – x} \right) = \mathop {\lim }\limits_{x \to  + \infty } {{{e^{{1 \over x} }-1}} \over {{1 \over x}}} = \mathop {\lim }\limits_{y \to  0^+ } {{{e^y} – 1} \over y} = 1\)

Quảng cáo