Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Câu 4.8 trang 177 Sách BT Giải Tích 12 nâng cao: Cho...

Câu 4.8 trang 177 Sách BT Giải Tích 12 nâng cao: Cho vectơ...

Cho vectơ . Câu 4.8 trang 177 sách bài tập Giải tích 12 Nâng cao - Bài 1. Số phức

Cho vectơ \(\vec u,\vec u’\) trong mặt phẳng  phức theo thứ tự biểu diễn các số phức z, z’.

a) Chứng minh rằng tích vô hướng \(\vec u.\vec {u’}\) thỏa mãn

\(\vec u.\vec {u’} = {1 \over 2}\left( {\bar zz’ + z\bar {z’}} \right)\)

b)  Từ câu a) suy ra rằng nếu \(\bar u \ne 0\) thì \(\vec u,\vec {u’}\) vuông góc khi và chỉ khi \({{z’} \over z}\) là số ảo.

c) Chứng minh rằng \(\vec u,\vec {u’}\) vuông góc khi và chỉ khi \(\left| {z + z’} \right| = \left| {z - z’} \right|\)

Giải

a) Viết \(z = x + yi,z’ = x’ + y’i\left( {x,y,x’,y’ \in R} \right)\) thì \(\overrightarrow u .\overrightarrow {u’}  = xx’ + yy’\)  và  \(\bar zz’ + z\bar{ z’} = \left( {x - yi} \right)\left( {x’ + y’i} \right) + \left( {x + yi} \right)\left( {x’ - y’i} \right) \)

                  \(= 2\left( {xx’ + yy’} \right)\)

Advertisements (Quảng cáo)

nên \(\overrightarrow u .\overrightarrow {u’} = {1 \over 2}\left( {\bar zz’ + z\bar z’} \right)\)

b) \(\overrightarrow u .\overrightarrow {u’}  = 0 \Leftrightarrow \bar zz’ + z\bar {z’} = 0\), chia cả hai vế cho \(z\bar z \ne 0,\) được

                                \(\overrightarrow u .\overrightarrow {u’} = 0 \Leftrightarrow {{z’} \over z} + {\bar {z’}  \over{\overline z } } = 0\)

                                \( \Leftrightarrow {{z’} \over z} + \overline {\left( {{{z’} \over z}} \right)}  = 0 \Leftrightarrow {{z’} \over z}\) là số ảo.

c) \(\left| {z + z’} \right| = \left| {z - z’} \right|\)

\(\Leftrightarrow \left( {z + z’} \right)\left( {\overline {z + z’} } \right) = \left( {z - z’} \right)\left( {\overline {z - z’} } \right)\)

\(\Leftrightarrow \bar zz’ + z\bar{ z’} = 0,\)

nên câu a) nó tương đương với \(\overrightarrow u .\overrightarrow {u’}= 0\) (Chú ý: khi \(\overrightarrow u .\overrightarrow {u’}\) không cùng phương, tính chất cuối này tương đương với tính chất: hình bình hành có hai đường chéo bằng nhau là hình chữ nhật)

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)