Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 22 trang 8 Sách bài tập Hình học lớp 12 Nâng...

Bài 22 trang 8 Sách bài tập Hình học lớp 12 Nâng cao: Cho khối hộp H có tâm I...

Cho khối hộp H có tâm I. Bài 22 trang 8 Sách bài tập Hình học lớp 12 Nâng cao - Bài 4. Thể tích của khối đa diện

Cho khối hộp H có tâm I. Chứng minh rằng nếu \(mp\left( \alpha  \right)\)chia H thành hai phần có thể tích bằng nhau thì \(\left( \alpha  \right)\) phải đi qua điểm I.

Giả sử H là khối hộp có tâm I và \(\left( \alpha  \right)\)là mặt phẳng không đi qua I. Ta phải chứng minh rằng \(\left( \alpha  \right)\) chia H thành hai khối đa diện H1H2 có thể tích không bằng nhau.

Advertisements (Quảng cáo)

Ta gọi \(\left( {\alpha ‘} \right)\) là mặt phẳng đi qua I và song song với \(\left( \alpha  \right)\). Khi đó, \(\left( \alpha  \right)\) chia H thành hai khối đa diện H’1H’2. Vì I là tâm của H nên phép đối xứng tâm I biến H’1 thành H’2.

Vậy hai khối đa diện có thể tích bằng nhau và bằng \({V \over 2}\). Trong đó V là thể tích của H. Cố nhiên phần của H nằm giữa hai mặt phẳng song song \(\left( \alpha  \right)\) và \(\left( {\alpha ‘} \right)\) có thể tích khác 0 nên thể tích của H1H2 không thể bằng nhau.

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)