Cho khối hộp \(ABCD.A’B’C’D’\)có đáy là hình chữ nhật với \(AB = \sqrt 3 \), \(AD = \sqrt 7 \). Hai mặt bên \(\left( {ABB’A’} \right)\) và \(\left( {ADD’A’} \right)\) lần lượt tạo với đáy những góc 450 và 600. Hãy tính thể tích khối hộp nếu biết cạnh bên bằng 1.
(h.10)
Kẻ \(\eqalign{ & A’H \bot \left( {ABCD} \right)\left( {H \in \left( {ABCD} \right)} \right), \cr & HM \bot AD\left( {M \in AD} \right),HK \bot AB\left( {K \in AB} \right). \cr} \)
Theo định lí ba đường vuông góc, ta có
\(AD \bot A’M,AB \bot A’K\)
Advertisements (Quảng cáo)
\( \Rightarrow \widehat {A’MH} = {60^0},\;\widehat {A’KH} = {45^0}\)
Đặt \(A’H = x\). Khi đó
\(A’H = x;\sin {60^0} = {{2 x } \over\sqrt 3}.\)
\(\eqalign{ & AM = \sqrt {A'{A^2} - A'{M^2}} = \sqrt {{{3 - 4{x^2}} \over 3}} = HK. \cr & \cr} \)
Nhưng \(HK = x\cot {45^0} = x,\)
suy ra \(x = \sqrt {{{3 - 4{x^2}} \over 3}} \Rightarrow x = \sqrt {{3 \over 7}.} \)
Vậy \({V_{ABCD.A’B’C’D’}} = AD.AB.x = \sqrt 7 .\sqrt 3 .\sqrt {{3 \over 7}} = 3.\)