Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Câu 1.15 trang 12 SBT Giải Tích lớp 12 nâng cao: Cho...

Câu 1.15 trang 12 SBT Giải Tích lớp 12 nâng cao: Cho hàm số...

Cho hàm số . Câu 1.15 trang 12 sách bài tập Giải tích 12 Nâng cao - Bài 1. Tính đơn điệu của hàm số

Cho hàm số \(f(x) = {4 \over \pi }x - \tan x,x \in \left[ {0;{\pi  \over 4}} \right]\)

a) Xét chiều biến thiên của hàm số trên đoạn \(\left[ {0;{\pi  \over 4}} \right]\)

b) Từ đó suy ra rằng: \(\tan x \le {4 \over \pi }x\) với mọi \(x \in \left[ {0;{\pi  \over 4}} \right]\)

Giải

a) Hàm số f liên tục tên nửa khoảng \(\left[ {0;{\pi  \over 4}} \right]\) và có đạo hàm

\(f'(x) = {4 \over \pi } - {1 \over {{{\cos }^2}x}} = {{4 - \pi } \over \pi } - {\tan ^2}x,x \in \left( {0;{\pi  \over 4}} \right)\)

\(f'(x) = 0 \Leftrightarrow \tan x = \sqrt {{{4 - \pi } \over \pi }} \)

Advertisements (Quảng cáo)

Dễ dàng thấy rằng \(0 < \sqrt {{{4 - \pi } \over \pi }}  < 1 = \tan {\pi  \over 4}\). Do đó tồn tại một số duy nhất \(\alpha  \in \left( {0;{\pi  \over 4}} \right)\) sao cho \(\tan \alpha  = \sqrt {{{4 - \pi } \over \pi }} \)

Bảng biến thiên

Hàm số đồng biến trên đoạn \(\left[ {0;\alpha} \right]\) và nghịch biến trên \(\left[ {\alpha ;{\pi  \over 4}} \right]\)

b) Theo bảng biến thiên ta có

                                \(f(x) \ge 0\) với mọi \(x \in \left[ {0;{\pi  \over 4}} \right]\)

Từ đó có bất đẳng thức cần chứng minh. 

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)