Trang chủ Lớp 6 Tài liệu Dạy - Học Toán 6 (sách cũ) Bài 10* trang 72 Tài liệu dạy – học toán 6 tập...

Bài 10* trang 72 Tài liệu dạy – học toán 6 tập 1,Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?...

Luyện tập - Chủ đề 7 : Tính chất chia hết - Bài 10* trang 72 Tài liệu dạy – học toán 6 tập 1 . Giải bài tập a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?

a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?

b) Chứng tỏ rằng tích hai số tự nhiên liên tiếp thì chia hết cho 2.

c) Chứng tỏ rằng mọi số tự nhiên có ba chữ số giống nhau đều là bội của 37.

d) Chứng tỏ rằng tổng \(\overline {ab}  + \overline {ba} \) chia hết cho 11.

a) Gọi ba số tự nhiên liên tiếp là: \(n; n + 1; n + 2 (n \in N\))

Ta có: n + n + 1 + n + 2 = 3n + 3

3n ⁝ 3, 3 ⁝ 3 \(\Rightarrow\) (3n + 3) ⁝ 3

Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3

b) Gọi hai số tự nhiên liên tiếp là n; n + 1 \((n \in N\))

Nếu n = 2k (\(k \in N\)) thì n ⁝ 2 do đó \(n(n + 1) ⁝ 2\)

Nếu n = 2k + 1 (\(k \in N\)) thì \(n + 1 = (2k + 2) ⁝ 2\) do đó n(n + 1) ⁝ 2

Ta có n(n + 1) ⁝ 2. Vậy tích của hai số tự nhiên liên tiếp chia hết cho 2

c) Gọi số tự nhiên có ba chữ số giống nhau là \(\overline {aaa} (a \in N^*)\)

\(\overline {aaa}  = 111.a\) mà 111 ⁝ 37 nên (111.a) ⁝ 37. Do đó: \(\overline {aaa}  \vdots 37\)

d) \(\overline {ab}  + \overline {ba}  = 10a + b + 10b + a = (11a + 11b) \;\vdots\; 11\)

Vì (11a) ⁝ 11 và (11b) ⁝ 11 nên \((11a + 11b) ⁝ 11.\) Do đó: \((\overline {ab}  + \overline {ba} )\; \vdots\; 11\)

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - Học Toán 6 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: