Trang chủ Lớp 12 SBT Toán 12 Nâng cao Câu 3.3 trang 141 Sách BT Giải Tích 12 nâng cao: Tìm

Câu 3.3 trang 141 Sách BT Giải Tích 12 nâng cao: Tìm...

Tìm. Câu 3.3 trang 141 sách bài tập Giải tích 12 Nâng cao – Bài 1. Nguyên hàm

Advertisements (Quảng cáo)

Tìm

a) \(\int {{{{x^2} – 3x} \over x}} dx\)                  b) \(\int {{{4{x^3} + 5x – 1} \over {{x^2}}}} dx\)

c) \(\int {{{{{\left( {x + 2} \right)}^2}} \over {{x^4}}}} dx\)                  d) \(\int {{{{{\left( {{x^2} + 1} \right)}^2}} \over {{x^2}}}} dx\)

Giải

a) \( \int {{{{x^2} – 3x} \over x}} dx= \int {(x – 3)} dx={{{x^2}} \over 2} – 3x + C\)                    

b) \(\int {{{4{x^3} + 5x – 1} \over {{x^2}}}} dx= \int {\left( {4x + {5 \over x} – {1 \over {{x^2}}}} \right)} dx\)

\(=2{x^2} + 2x + {1 \over x} + C\)

c) \( \int {{{{{\left( {x + 2} \right)}^2}} \over {{x^4}}}} dx = \int {{{{x^2} + 4x + 4} \over {{x^4}}}}  = \int {\left( {{1 \over {{x^2}}} + {4 \over {{x^3}}} + {4 \over {{x^4}}}} \right)} dx\)

\(=- {1 \over x} – {2 \over {{x^2}}} – {4 \over {3{x^3}}} + C\)    

d) \(\int {{{{{\left( {{x^2} + 1} \right)}^2}} \over {{x^2}}}} dx = \int {{{{x^4} + 2{x^2} + 1} \over {{x^4}}}} \)

\(= \int {\left( {1 + {2 \over {{x^2}}} + {1 \over {{x^4}}}} \right)} dx={{{x^3}} \over 3} + {{{x^2}} \over 2} – {1 \over x} + C\)