Trang chủ Lớp 8 Tài liệu Dạy học Toán 8 (sách cũ) Bài tập 23 trang 105 Tài liệu dạy – học Toán 8...

Bài tập 23 trang 105 Tài liệu dạy – học Toán 8 tập 1, Cho tam giác ANC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình...

Bài tập - Chủ đề 1 : Tứ giác – Hình thang - Bài tập 23 trang 105 Tài liệu dạy – học Toán 8 tập 1. Giải bài tập Cho tam giác ANC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.

Cho tam giác ANC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.

Xét tam giác ABC ta có:

M là trung điểm của AB (gt) ;

N là trung điểm của AC (gt) ;

\( \Rightarrow MN\) là đường trung bình của tam giác ABC \( \Rightarrow MN//BC\)

\( \Rightarrow \) Tứ giác MNPH là hình thang.

Xét tam giác ABC ta có :

Advertisements (Quảng cáo)

M là trung điểm của AB (gt) ;

P là trung điểm của BC

\( \Rightarrow MP\) là đường trung bình của tam giác ABC \( \Rightarrow MP = {1 \over 2}AC\)

\(\Delta ACH\) vuông tại H có HN là trung tuyến (N là trung điểm của AC)

\( \Rightarrow NH = {1 \over 2}AC\). Mà \(MP = {1 \over 2}AC\,\,\left( {cmt} \right)\)

\( \Rightarrow NH = MP\)

Hình thang MNPH (MN//PH) có \(MP = NH\) nên là hình thang cân.

Nhận xét : cần bổ sung thêm \(AB < AC\)

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy học Toán 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)